Modelling of GRDP the Construction Sector in Java Island Using Robust Geographically and Temporally Weighted Regression (RGTWR)
نویسندگان
چکیده
منابع مشابه
the impact of e-readiness on ec success in public sector in iran the impact of e-readiness on ec success in public sector in iran
acknowledge the importance of e-commerce to their countries and to survival of their businesses and in creating and encouraging an atmosphere for the wide adoption and success of e-commerce in the long term. the investment for implementing e-commerce in the public sector is one of the areas which is focused in government‘s action plan for cross-disciplinary it development and e-readiness in go...
Comparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests
Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-g...
متن کاملGeographically and temporally weighted regression for modeling spatio-temporal variation in house prices
By incorporating temporal effects into the geographically weighted regression (GWR) model, an extended GWR model, geographically and temporally weighted regression (GTWR), has been developed to deal with both spatial and temporal nonstationarity simultaneously in real estate market data. Unlike the standard GWR model, GTWR integrates both temporal and spatial information in the weighting matric...
متن کاملC.5 Geographically Weighted Regression
Geographically weighted regression (GWR) was introduced to the geography literature by Brunsdon et al. (1996) to study the potential for relationships in a regression model to vary in geographical space, or what is termed parametric nonstationarity. GWR is based on the non-parametric technique of locally weighted regression developed in statistics for curve-fitting and smoothing applications, w...
متن کاملMapping the results of local statistics: Using geographically weighted regression.
The application of geographically weighted regression (GWR) - a local spatial statistical technique used to test for spatial nonstationarity - has grown rapidly in the social, health and demographic sciences. GWR is a useful exploratory analytical tool that generates a set of location-specific parameter estimates which can be mapped and analysed to provide information on spatial nonstationarity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Scientific Research in Science, Engineering and Technology
سال: 2019
ISSN: 2394-4099,2395-1990
DOI: 10.32628/ijsrset196141